Comment on: Bente Klarlund Peddersen, Physical activity and muscle-brain crosstalk

Leandro Paim da Cruz Carvalho, Jorge Luiz de Brito Gomes

Resumo


In the recent article published in Nature Reviews Endocrinology – “Physical activity and muscle-brain crosstalk” [1], the author - Bente Klaurlund Peddersen, a great reference in the study of skeletal muscle cell biology, contextualizes the theme by citing great philosophers of the past and their perceptions about the link between physical activity and the mind. Emphasizing the phrase of the German philosopher Friedrich Nietzsche: “All great thoughts are conceived by walking”....


Texto completo:

HTML PDF ENGLISH PDF PORTUGUÊS

Referências


Pedersen BK. Physical activity and muscle–brain crosstalk. Nat Rev Endocrinol 2019;15(7):383-92. https://doi.org/10.1038/s41574-019-0174-x

McLeod M, Breen L, Hamilton DL, Philp A. Live strong and prosper: the importance of skeletal muscle strength for healthy ageing. Biogerontology 2016;17(3):497-510. https://doi.org/10.1007/s10522-015-9631-7

Hoffmann C, Weigert C. Skeletal muscle as an endocrine organ: the role of myokines in exercise adaptations. Cold Spring Harb Perspect Med 2017;7(11):a029793. https://doi.org/10.1101/cshperspect.a029793

Young MF, Valaris S, Wrann CD. A role for FNDC5/Irisin in the beneficial effects of exercise on the brain and in neurodegenerative diseases. Prog Cardiovasc Dis 2019;62(2):172-8. https://doi.org/10.1016/j.pcad.2019.02.007

Cotman CW, Berchtold NC, Christie L-A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 2007;30(9):464-72. https://doi.org/10.1016/j.tins.2007.06.011

Erickson KI, Gildengers AG, Butters MA. Physical activity and brain plasticity in late adulthood. Dialogues Clin Neurosci 2013;15(1):99-108. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23576893

Kelley GA, Kelley KS. Exercise and sleep: a systematic review of previous meta-analyses. J Evid Based Med [Internet]. 2017;10(1):26-36. https://doi.org/10.1111/jebm.12236

Blundell JE, Gibbons C, Caudwell P, Finlayson G, Hopkins M. Appetite control and energy balance: impact of exercise. Obes Rev 2015;16:67-76. https://doi.org/10.1111/obr.12257

Crush EA, Frith E, Loprinzi PD. Experimental effects of acute exercise duration and exercise recovery on mood state. J Affect Disord 2018;229:282-7. https://doi.org/10.1016/j.jad.2017.12.092

Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P et al. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil 2003;24(2/3):113-9. https://doi.org/10.1023/a:1026070911202

Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G et al. Running-induced systemic cathepsin b secretion is associated with memory function. Cell Metab 2016;24(2):332-40. https://doi.org/10.1016/j.cmet.2016.05.025

Martinowich K, Manji H, Lu B. New insights into BDNF function in depression and anxiety. Nat Neurosci 2007;10(9):1089-93. https://doi.org/10.1038/nn1971

Rasmussen P, Brassard P, Adser H, Pedersen M V, Leick L, Hart E et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol 2009;94(10):1062-9. https://doi.org/10.1113/expphysiol.2009.048512

De la Rosa A, Solana E, Corpas R, Bartrés-Faz D, Pallàs M, Vina J et al. Long-term exercise training improves memory in middle-aged men and modulates peripheral levels of BDNF and Cathepsin B. Sci Rep 2019;9(1):3337. https://doi.org/10.1038/s41598-019-40040-8

Clow C, Jasmin BJ. Brain-derived Neurotrophic Factor Regulates Satellite Cell Differentiation and Skeltal Muscle Regeneration. Bronner-Fraser M, ed. Mol Biol Cell 2010;21(13):2182-90. https://doi.org//10.1091/mbc.e10-02-0154

Church DD, Hoffman JR, Mangine GT, Jajtner AR, Townsend JR, Beyer KS et al. Comparison of high-intensity vs. high-volume resistance training on the BDNF response to exercise. J Appl Physiol 2016;121(1):123-8. https://doi.org/10.1152/japplphysiol.00233.2016

Dinoff A, Herrmann N, Swardfager W, Liu CS, Sherman C, Chan S et al. The effect of exercise training on resting concentrations of peripheral Brain-Derived Neurotrophic Factor (BDNF): a meta-analysis. Hills RK, ed. PLoS One 2016;11(9):e0163037. https://doi.org/10.1371/journal.pone.0163037

Novaes Gomes FG, Fernandes J, Vannucci Campos D, Cassilhas RC, Viana GM, D’Almeida V et al. The beneficial effects of strength exercise on hippocampal cell proliferation and apoptotic signaling is impaired by anabolic androgenic steroids. Psychoneuroendocrinology 2014;50:106-17. https://doi.org/10.1016/j.psyneuen.2014.08.009

Fernandes J, Arida RM. Does resistance exercise exert a role in hippocampal neurogenesis? J Physiol 2016;594(22):6799-9. https://doi.org/10.1113/jp272309

Fortes L de S, Costa M da C, Perrier-Melo RJ, Brito-Gomes JL, Nascimento-Júnior JRA, de Lima-Júnior DRAA et al. Effect of volume in resistance training on inhibitory control in young adults: a randomized and crossover investigation. Front Psychol 2018;9. https://doi.org/10.3389/fpsyg.2018.02028

Belviranli M, Okudan N, Kabak B, Erdoğan M, Karanfilci M. The relationship between brain-derived neurotrophic factor, irisin and cognitive skills of endurance athletes. Phys Sportsmed 2016;44(3):290-6. https://doi.org/10.1080/00913847.2016.1196125

Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012;481(7382):463-8. https://doi.org/10.1038/nature10777

Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D et al. Exercise Induces Hippocampal BDNF through a PGC-1α/FNDC5 Pathway. Cell Metab 2013;18(5):649-59. https://doi.org/10.1016/j.cmet.2013.09.008

Albrecht E, Norheim F, Thiede B, Holen T, Ohashi T, Schering L et al. Irisin – a myth rather than an exercise-inducible myokine. Sci Rep 2015;5(1):8889. https://doi.org/10.1038/srep08889

Jedrychowski MP, Wrann CD, Paulo JA, Gerber KK, Szpyt J, Robinson MM et al. Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab 2015;22(4):734-40. https://doi.org/10.1016/j.cmet.2015.08.001

Küster OC, Laptinskaya D, Fissler P, Schnack C, Zügel M, Nold V et al. Novel blood-based biomarkers of cognition, stress, and physical or cognitive training in older adults at risk of dementia: preliminary evidence for a role of BDNF, Irisin, and the Kynurenine pathway. Leyhe T, ed. J Alzheimer’s Dis 2017;59(3):1097-111. https://doi.org/10.3233/jad-170447

Fagundo AB, Jiménez-Murcia S, Giner-Bartolomé C, Agüera Z, Sauchelli S, Pardo M et al. Modulation of irisin and physical activity on executive functions in obesity and morbid obesity. Sci Rep 2016;6(1):30820. https://doi.org/10.1038/srep30820

Coppen AJ, Doogan DP. Serotonin and its place in the pathogenesis of depression. J Clin Psychiatry 1988;49Suppl:4-11. http://www.ncbi.nlm.nih.gov/pubmed/3045111

Müller N, Schwarz MJ. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 2007;12(11):988-1000. https://doi.org/10.1038/sj.mp.4002006

Schwarcz R, Bruno JP, Muchowski PJ, Wu H-Q. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci 2012;13(7):465-77. https://doi.org/10.1038/nrn3257

Spiegelman BM. Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. Novartis Found Symp 2007;287:60-3;discussion 63-9. https://doi.org/10.1002/9780470725207.ch5

Skovlund CW, Mørch LS, Kessing LV, Lidegaard Ø. Association of hormonal contraception with depression. JAMA Psychiatry 2016;73(11):1154. https://doi.org/10.1001/jamapsychiatry.2016.2387

Oxenkrug G. Insulin resistance and dysregulation of tryptophan–kynurenine and kynurenine–nicotinamide adenine dinucleotide metabolic pathways. Mol Neurobiol 2013;48(2):294-301. https://doi.org/10.1007/s12035-013-8497-4




DOI: http://dx.doi.org/10.33233/rbfe.v19i2.4111

Apontamentos

  • Não há apontamentos.