Metabolism of fatty acids, secondary complications and effects of physical exercise: integrative review

Djeyne Silveira Wagmacker, Alice Miranda de Oliveira, Edna Conceição de Oliveira, Alan Carlos Nery dos Santos, Luiz Erlon Araújo Rodrigues, Ana Marice Teixeira Ladeia

Resumo


Introduction: Diet is a complex set of exposures that frequently interact, and whose cumulative effects influence the results of health. This includes effects on systemic inflammation markers in metabolic disturbances and cardiovascular diseases. Various studies have been presented relating the effect of physical exercise on lipids, however, the results are still controversial. Objective: To describe fatty acid metabolism and the effect of physical exercise on secondary complications. Methods: An integrative review was conducted on topics in the Medline, Pubmed, Web of Science and Scopus databases, published up to the year 2017. Results: Fatty acids, depending on their biochemical characteristics and spatial configuration, have differentiated effect on cardiovascular health, however, studies still present contradictory results about the therapeutic use of certain fatty acids. Physical exercise appears to benefit fatty acid metabolism and attenuate the complications secondary to the intake of certain fatty acids, and potentializes the positive effects of distinct fatty acids. Conclusion: However, variants of physical exercise, such as intensity, duration, time of observation of effects of the results, limit the authors to concluding, with a certain degree of certainty, about the effect of physical exercise on fatty acids and secondary complications, since the studies in the literature continue to be contradictory.

Keywords: fatty acids, exercise, inflammation, oxidative stress.


Texto completo:

HTML PDF ENGLISH PDF PORTUGUÊS

Referências


Moran AE, Forouzanfar MH, Roth GA, Mensah GA, Ezzati M, Murray CJ et al. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: the Global Burden of Disease 2010 study. Circulation 2014;129:1483-92. https://doi.org/10.1161/circulationaha.113.004042

Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 2011;377:557-67. https://doi.org/10.1016/s0140-6736(10)62037-5

Joint ESC. Guidelines Atherosclerosis 2016;252:207-74.

Gottlieb MG, Bonardi G, Moriguchi EH. Fisiopatologia e aspectos inflamatórios da aterosclerose. Scientia Medica 2005;15(3):203-7.

Shivappa, N, Blair CK, Prizment AE, Jacobs DR, Steck SE, Hébert JR. Association between inflammatory potential of diet and mortality in the Iowa Women’s Health study. Eur J Nutr 2016;55(4):1491-502. https://doi.org/10.1007/s00394-015-0967

Martin CA, Matshushita M, Souza NE. Ácidos graxos trans: implicações nutricionais e fontes na dieta. Rev Nutr 2004;17(3):351-9. https://doi.org/10.1590/s1415-52732004000300009

Costa AGV, Bressan J, Sabarense CM. Acidos graxos trans: Alimentos e efeitos na saúde. Archivos Latinoamericanos de Nutricion 2006;56(1):1-9.

Oomen CM, Ocke MC, Feskens EJ, Van Erp-Baart MA, Kok FJ, Kromhout D. Association between trans fatty acid intake and 10-year risk of coronary heart disease in the Zutphen Elderly Study: a prospective population-based study. Lancet 2001;357(1):746-51. https://doi.org/10.1016/s0140-6736(00)04166-0

Perez-Matos MC, Morales-Alvarez MC, Mendivil CO. Lipids: a suitable therapeutic target in diabetic neuropathy? J Diabetes Res 2017;2017:6943851. https://doi.org/10.1155/2017/6943851

Lopez-Garcia E, Schulze MB, Meigs JB, Manson JE, Rifai N, Stampfer MJ et al. Consumption of trans fatty acids is related to plasma biomarkers of inflammation and endothelial dysfunction. J Nutr 2005;135(1): 562-6. https://doi.org/10.1093/jn/135.3.562

Jabbour G, Iancu H-D, Paulin A, Lavoie J- M, Lemoine-Morel S, Zouhal H. Effects of acute supramaximal cycle exercise on plasma ffa concentration in obese adolescent boys. PLoS One 2015;10(6):e0129654. https://doi.org/10.1371/journal.pone.0129654

Bilet L, Brouwers B, van Ewijk PA, Hesselink MK, Kooi ME, Schrauwen P, et al. Acute exercise does not decrease liver fat in men with overweight or NAFLD. Sci Rep 2015;13(5):9709. https://doi.org/10.1038/srep09709

Thivel D, Metz L, Julien A, Morio B, Duche P. Obese but not lean adolescents spontaneously decrease energy intake after intensive exercise. Physiol Behav 2014;123:41-6. https://doi.org/10.1016/j.physbeh.2013.09.018

Bodel NG, Gillum T. 90 Minutes of moderate-intensity exercise does not attenuate postprandial triglycerides in older adults. Int J Exerc Sci 2016;9(5):677-84.

Davitt PM, Arent SM, Tuazon MA, Golem DL, Henderson GC. Postprandial triglyceride and free fatty acid metabolism in obese women after either endurance or resistance exercise. J Appl Physiol 2013;114:1743-54. https://doi.org/10.1152/japplphysiol.00095.2013

Durstine JL, Thompson PD. Exercise in the treatment of lipid disorders. Cardiol Clin 2001;19:471-88. https://doi.org/10.1016/s0733-8651(05)70230-7

Rodrigues LEA. Lipídios: aspectos bioquímicos e médicos. Salvador/Bahia: Ed UFBA; 2006.

Mäkinen S, Nguyen HY, Skrobuk P, Koistinen HA. Palmitate and oleate exert differential effects on insulin signalling and glucose uptake in human skeletal muscle cells. Endocr Connect 2017;5:17-0039. https://doi.org/10.1530/EC-17-0039

Kadhum AA, Shamma MN. Edible lipids modification processes: A review. Crit Rev Food Sci Nutr 2017;57(1):48-58. https://doi.org/10.1080/10408398.2013.848834

Moreira NX, Curi R, Mancini Filho J. Acidos graxos: uma revisão. Nutrire 2002;24:105-23.

Lima V. Cuidado com os triglicerídeos! (bioquímica). In: Somos Físicos; 2016 [acesso em 2019 maio 31]. Disponível em: http://www.vanialima.blog.br/2016/08/cuidado-com-o-triglicerides-bioquimica.html

Brito MS, Villavicencio ALCH, Mancini-Filho J. Effects of irradiation on trans fatty acids formation in ground beef. Radiat Phys Chem 2002;63:337-40. https://doi.org/10.1016/s0969-806x(01)00647-8

Aued-Pimentel S et al. Ácidos graxos saturados versus ácidos graxos trans em biscoitos. Rev Inst Adolfo Lutz 2003;62(2):131-7.

Sugano M, Ikeda I. Metabolic interactions between essential and trans fatty acids. Curr Opin Lipidol 1996;7:38-42. https://doi.org/10.1097/00041433-199602000-00009

Abreu P, Leal-Cardoso JH, Ceccatto VM, Hirabara SM. Regulation of muscle plasticity and trophism by fatty acids: A short review. Rev Assoc Med Bras 2017;63(2):148-55. https://doi.org/10.1590/1806-9282.63.02.148

Sandres TA, Oakley FR, Crook D, Coper JA, Miller GJ. High intakes of trans monounsaturated fatty acids taken for 2 weeks do not influence procoagulant and fibrinolytic risk markers for CHD in young healthy men. Br J Nutr 2003;89(6):767-76. https://doi.org/10.1079/bjn2003850

Perez-Matos MC, Morales-Alvarez MC, Mendivil CO, Lipids: a suitable therapeutic target in diabetic neuropathy? J Diabetes Res 2017. https://doi.org/10.1155/2017/6943851

Zapolska-Downar D, Kosmider A, Naruszewicz M. Trans fatty acids induce apoptosis in human endothelial cells. J Physiol Pharmacol 2005;56(4):611-25.

Sun Q, Ma J, Campos H, Hankinson SE, Manson JE, Stampfer MJ et al. A prospective study of trans fatty acids in erythrocytes and risk of coronary heart disease. Circulation 2007;115(14):1858-65. https://doi.org/10.1161/circulationaha.106.679985

Chajès V, Biessy C, Ferrari P, Romieu I, Freisling H, Huybrechts I et al. Plasma elaidic acid level as biomarker of industrial trans fatty acids and risk of weight change: Report from the EPIC Study. PLoSOne 2015;10(2):e0118206. https://doi.org/10.1371/journal.pone.0118206

Ford PA et al. Trans fatty acid intake is related to emotional affect in the Adventist Health Study-2. Nutr Res 2016;36(6):509-17. https://doi.org/10.1016/j.nutres.2016.01.005

Sposito AC et al. IV Diretriz Brasileira sobre Dislipidemias e Prevenção da Aterosclerose: Departamento de Aterosclerose da Sociedade Brasileira de Cardiologia. Arq Bras Cardiol 2007;88(1)1 2-19.

Abbott SK, Else PL, Hulbert AJ. Membrane fatty acid composition of rat skeletal muscle is most responsive to the balance of dietary n-3 and n-6 PUFA. Br J Nutr 2010;103(4):522-9. https://doi.org/10.1017/s0007114509992133

Veliça PP, Khanim FL, Bunce CM. Prostaglandin D2 inhibits C2C12 myogenesis. Mol Cell Endocrinol 2010;319(1-2):71-8. https://doi.org/10.1016/j.mce.2010.01.023

Fostok SF, Ezzeddine RA, Homaidan FR et al. Interleukin-6 and Cyclooxygenase-2 downregulation by fatty-acid fractions of Ranunculus constantinopolitanus. BMC Complementary and Alternative Medicine 2009;9:44. https://doi.org/10.1201/b16611-5

Hamley S. The effect of replacing saturated fat with mostly n-6 polyunsaturated fat on coronary heart disease: a meta-analysis of randomised controlled trials. Nutr J 2017;16(30). https://doi.org/10.1186/s12937-017-0254-5

Kazantzis M, Stahl A. Fatty acid transport proteins, implications in physiology and disease. Biochimica et Biophysica Acta 2012;1821(5):852-7. https://doi.org/10.1016/j.bbalip.2011.09.010

Aon MA, Bhatt N, Cortassa SC. Mitochondrial and cellular mechanisms for managing lipid excess. Frontiers in Physiology 2014;5(282). https://doi.org/10.3389/fphys.2014.00282

Sztalryd C, Kimmel AR. Perilipins: lipid droplet coat proteins adapted for tissue-specific energy storage and utilization, and lipid cytoprotection. Biochimie 2014;96:96-101. https://doi.org/10.1016/j.biochi.2013.08.026

Morales PE, Bucarey JL, Espinosa A. Muscle lipid metabolism: role of lipid droplets and perilipins. Journal of Diabetes Research 2017:1789395. https://doi.org/10.1155/2017/1789395

Ewa H, Agnieszka K, Tomasz S, Adrian C. The role of fatty-acid transport proteins (FAT/CD36, FABPpm, FATP) in lipid metabolism in skeletal muscles. Postepy Hig Med Dosw 2008;62:433-41.

Smith BK, Bonen A, Holloway GP. A dual mechanism of action for skeletal muscle FAT/CD36 during exercise. Exercise and Sport Sciences Reviews 2012;40(4):211-7. https://doi.org/10.1097/jes.0b013e31825eb263

Jayewardene AF, Mavros Y, Reeves A, Hancock DP, Gwinn T, Rooney KB. Interactions between fatty acid transport proteins, genes that encode for them, and exercise: a systematic review. J Cell Physiol 2016;231(8):1671-87. https://doi.org/10.1002/jcp.25281

Watt MJ, Cheng Y. Triglyceride metabolism in exercising muscle. Biochim Biophys Acta 2017;23(17):30119-1. https://doi.org/10.1016/j.bbalip.2017.06.015

Badin PM, Loubiere C, Coonen M et al. Regulation of skeletal muscle lipolysis and oxidative metabolism by the co-lipase CGI-58. Journal of Lipid Research 2012;53(5):839-48. https://doi.org/10.1194/jlr.m019182

Turnbull PC, Longo AB, Ramos SV, Roy BD, Ward WE, Peters SJ. Increases in skeletal muscle ATGL and its inhibitor G0S2 following 8 weeks of endurance training in metabolically different rat skeletal muscles. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 2016;310(2):R125–R133. https://doi.org/10.1152/ajpregu.00062.2015

Roepstorff C, Vistisen B, Donsmark M et al. Regulation of hormone-sensitive lipase activity and Ser563 and Ser565 phosphorylation in human skeletal muscle during exercise. J Physiol 2004;560(2):551-62. https://doi.org/10.1113/jphysiol.2004.066480

Casas M, Figueroa R, Jorquera G, Escobar M, Molgó J, Jaimovich E. IP(3)-dependent, post-tetanic calcium transients induced by electrostimulation of adult skeletal muscle fibers. The Journal of General Physiology 2010;136(4):455-67. https://doi.org/10.1085/jgp.200910397

Barres R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 2012;15:405-11. https://doi.org/10.1016/j.cmet.2012.01.001

Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 2013;17:162-84. https://doi.org/10.1016/j.cmet.2012.12.012

Kim J, Lee KP, Lee DW, Lim K. Piperine enhances carbohydrate/fat metabolism in skeletal muscle during acute exercise in mice. Nutrition & Metabolism 2017;14:43. https://doi.org/10.1186/s12986-017-0194-2

Homer AR, Fenemor SP, Perry TL, Rehrer NJ, Cameron CM, Skeaff CM et al. Regular activity breaks combined with physical activity improve postprandial plasma triglyceride, nonesterified fatty acid, and insulin responses in healthy, normal weight adults: A randomized crossover trial. J Clin Lipidol 2017;19(17):30351-3. https://doi.org/10.1016/j.jacl.2017.06.007

Petridou A, Chatzinikolaou A, Avloniti A, Jamurtas A, Loules G, Papassotiriou I et al. Increased triacylglycerol lipase activity in adipose tissue of lean and obese men during endurance exercise. J Clin Endocrinol Metab 2017;12:3945-52. https://doi.org/10.1210/jc.2017-00168

Nojiri S, Daida H. Atherosclerotic cardiovascular risk in Japan. Japanese Clinical Medicine 2017;8; 117906601771271. https://doi.org/10.1177/1179066017712713

Iso H, Cui R, Date C et al. C-reactive protein levels and risk of mortality from cardiovascular disease in Japanese: the JACC Study. Atherosclerosis 2009;207:291-7. https://doi.org/10.1016/j.atherosclerosis.2009.04.020

Ghisi GLM et al. Exercício físico e disfunção endotelial. Arq Bras Cardiol 2010; 95(5):130-7. https://doi.org/10.1590/s0066-782x2010001500025

McClean CM, McLaughlin J, Burke G, Murphy MH, Trinick T, Duly E, Davison GW. The effect of acute aerobic exercise on pulse wave velocity and oxidative stress following postprandial hypertriglyceridemia in health men. Eur J Appl Physiol 2007;100:225-34. https://doi.org/10.1007/s00421-007-0422-y

Stapleton PA, Goodwill AG, James ME. Hypercholesterolemia and microvascular dysfunction: interventional strategies. J Inflamm 2010;18;7:54. https://doi.org/10.1186/1476-9255-7-54

Nappo F, Esposito K, Cioffi M, Giugliano G, Molinari AM, Paolisso G et al. Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: role of fat and carbohydrate meals. J Am Coll Cardiol 2002;39:1145-50. https://doi.org/10.1016/s0735-1097(02)01741-2

Pinho, RA. Araújo MC, Ghisi GLM et al. Doença arterial coronariana, exercício físico e estresse oxidativo. Arq Bras Cardiol 2010;94(4). https://doi.org/10.1590/s0066-782x2010000400018

Vuorimaa T, Ahotupa M, Irjala K, Vasankari T. Acute prolonged exercise reduces moderately oxidized LDL in healthy men. Int J Sports Med 2005;26:420-5. https://doi.org/10.1055/s-2004-821142

Paton CM et al. Hemostatic response to postprandial lipemia before and after exercise training. J Appl Physiol 2006;101:316-21. https://doi.org/10.1152/japplphysiol.01363.2005

MacEneaney JO et al. effect of prior exercise on postprandial lipemia and markers of inflammation and endothelial activation in normal weight and overweight adolescent boys. Eur J Appl Physiol 2009; 106:721-9. https://doi.org/10.1007/s00421-009-1073-y

Dekker MJ, Graham ET, Ooi TC, Robinson LE. Exercise prior to fat ingestion lowers fasting and postprandial VLDL and decreases adipose tissue IL-6 and GIP receptor mRNA in hypertriacylglycerolemic men. J Nutr Biochem 2010;21:983-90. https://doi.org/10.1016/j.jnutbio.2009.08.004

Tyldum GA et al. Endothelial dysfunction induced by postprandial lipemia: complete protection afforded by high intensity aerobic interval exercise. J Am Coll Cardiol. 2009;53(2):200-2006.

Medina-Remon A, Tresserra-Rimbau A, Pons A, Tur JA, Martorell M, Ros E et al. Effects of total dietary polyphenols on plasma nitric oxide and blood pressure in a high cardiovascular risk cohort. The predimed randomized trial. Nutr Metab Cardiovasc Dis 2015;25:60-7. https://doi.org/10.1016/j.numecd.2014.09.001

Mickleborough T.D. Omega-3 polyunsaturated fatty acids in physical performance optimization. Int J Sport Nutr Exerc Metab 2013;23:83-96. https://doi.org/10.1123/ijsnem.23.1.83

Garcia JJ, Bote E, Hinchado MD, Ortega E. A single session of intense exercise improves the inflammatory response in healthy sedentary women. J Physiol Biochem 2011;67:87-94. https://doi.org/10.1007/s13105-010-0052-4

Capó X, Martorell M, Sureda A, Riera J, Drobnic F, Tur, JA, Pons A. Effects of almond- and olive oil-based docosahexaenoic- and vitamin e-enriched beverage dietary supplementation on inflammation associated to exercise and age. Nutrients 2016;8(10):619. https://doi.org/10.3390/nu8100619

Rocha-Rodrigues S, Rodríguez A, Gonçalves IO, Moreira A, Maciel E, Santos S et al. Impact of physical exercise on visceral adipose tissue fatty acid profile and inflammation in response to a high-fat diet regimen. Int J Biochem Cell Biol 2017;87:114-24. https://doi.org/10.1016/j.biocel.2017.04.008

Pinho RA, Araújo MC, Ghisi GLM, et al. Doença arterial coronariana, exercício físico e estresse oxidativo. Arq Bras Cardiol 2010;94(4).

Sureda A, Tauler P, Aguiló A, Cases N, Fuentespina E, Córdova A et al. Relation between oxidative stress markers and antioxidant endogenous defenses during exhaustive exercise. Free Radic Res 2005;39(12):1317-24. https://doi.org/10.1080/10715760500177500

Jong-Shyan W, Lee T, Chow S. Role of exercise intensities in oxidized low-density lipoprotein-mediated redox status of monocyte in men. J Appl Physiol 2006;101(3):740-4. https://doi.org/10.1152/japplphysiol.00144.2006




DOI: http://dx.doi.org/10.33233/rbfe.v19i2.4085

Apontamentos

  • Não há apontamentos.