Physical exercise and medicinal plants: a promising source for health promotion?

Lúcio Marques Vieira Souza, Jymmys Lopes Dos Santos, Silvan Silva de Araújo, Anderson Carlos Marçal, Charles dos Santos Estevam

Resumo


In view of the high consumption and phytotherapic medicines available on the market for use associated with exercise, from a nutritional point of view, it is extremely important to prove the safety of their use in order to avoid intoxication. In addition, the application of medicinal and phytotherapic plants associated with physical exercise presents another alternative resource to improve performance and attenuate the harmful effects caused by high-intensity exercise. Therefore, the adoption of physical exercises associated with the ingestion of supplements from plants with medicinal properties is suggested as important possibilities for health maintenance and promotion, both in pathology and in physical performance and in the mitigation of deleterious damages caused by physiological stress associated with chronic diseases.

Keywords: physical exercise, medicinal plants, supplementation, health promotion.

Texto completo:

HTML PDF ENGLISH PDF PORTUGUÊS

Referências


Lafay S, Jan C, Nardon K, Lemaire B, Ibarra A, Roller M, Houvenaeghel M, Juhel C, Cara L. Grape extract improves antioxidant status and physical performance in elite male athletes. J Sports Sci Med 2009;8(3):468-80.

Merino FJZ, Oliveira VB, Paula CS, Cansian FC, Souza AM, Zuchetto M, et al. Análise fitoquímica, potencial antioxidante e toxicidade do extrato bruto etanólico e das frações da espécie Senecio westermaniiDusén frente à Artemia salina. Revista Brasileira de Plantas Medicinais 2015;17(4Suppl3):1031-40. https://doi.org/10.1590/1983-084x/14_137

Breese BC, McNarry MA, Marwood S, Blackwell JR, Bailey SJ, Jones AM. Beetroot juice supplementation speeds O2 uptake kinetics and improves exercise tolerance during severe-intensity exercise initiated from an elevated metabolic rate. Am J Physiol Regul Integr Comp Physiol 2013,305(12):R1441–R50. https://doi.org/10.1152/ajpregu.00295.2013

Wylie LJ, Kelly J, Bailey SJ, Blackwell JR, Skiba PF, Winyard PG et al. Beetroot juice and exercise: pharmacodynamic and dose-response relationships. J Applied Physiol 2013;115:325-36. https://doi.org/10.1152/japplphysiol.00372.2013

Oh JK, Shin YO, Yoon JH, Kim SH, Shin HC, Hwang HJ. Effect of supplementation with Ecklonia cava polyphenol on endurance performance of college students. International J Sport Nutr Exerc Metab 2010;20(1):72-9. https://doi.org/10.1123/ijsnem.20.1.72

Silvestre JC, Gianoni R, Pereira PE. Cafeína e desempenho físico: metabolismo e mecanismos de ação. Rev Bras Fisiol Exerc 2018;17(2):130-7.

Sapata KB, Fayh APT, Oliveira AR. Efeitos do consumo prévio de carboidratos sobre a resposta glicêmica e desempenho. Rev Bras Med Esporte 2006;12(4):189-94. https://doi.org/10.1590/S1517-86922006000400005

Lima-Silva AE, Fernandes TC, De-Oliveira FR, Nakamura FY, Gevaerd MS. Metabolismo do glicogênio muscular durante o exercício físico: mecanismos de regulação. Rev Nutr 2007;20(4):417-29. https://doi.org/10.1590/S1415-52732007000400009

Gonzalez JT, Fuchs CJ, Betts JA, van Loon LJ. Liver glycogen metabolism during and after prolonged endurance-type exercise. Am J Physiol Endocrinol Metab 2016;311(3):E543–E553. https://doi.org/10.1152/ajpendo.00232.2016

Areta JL, Hopkins WG. Skeletal muscle glycogen content at rest and during endurance exercise in humans: a meta-analysis. Sports Med 2018;48(9):2091-102. https://doi.org/10.1007/s40279-018-0941-1

Jensen TE, Richter EA. Regulation of glucose and glycogen metabolism during and after exercise. J Physiol 2012;590(5):1069-76. https://doi.org/10.1113/jphysiol.2011.224972

Howatson G, Van Someren K. The prevention and treatment of exercise induced muscle damage. Sport Med 2008;38(6):483-503. https://doi.org/10.2165/00007256-200838060-00004

Powers SK, Radak Z, Ji LL. Exercise-induced oxidative stress: past, present and future. J Physiol 2016;594(18):5081-92. https://doi.org/10.1113/JP270646

Castrogiovanni P, Imbesi R. Oxidative stress and skeletal muscle in exercise. Ital J Anat Embryol 2012;117(2):107-17.

Parker L, Trewin A, Levinger I, Shaw CS, Stepto NK. Exercise-intensity dependent alterations in plasma redox status do not reflect skeletal muscle redox-sensitive protein signaling. J Sci Med Sport 2018;21(4):416-21. https://doi.org/10.1016/j.jsams.2017.06.017

Myburgh KH. Polyphenol supplementation: benefits for exercise performance or oxidative stress? Sports Med 2014;44(Suppl1):S57-S70. https://doi.org/10.1007/s40279-014-0151-4

Santos JLD, Araújo SS, Silva AMOE, Lima CA, Souza LMV, Costa RA et al. Ethanolic extract and ethyl acetate fraction of Coutoubea spicata attenuate hyperglycemia, oxidative stress, and muscle damage in alloxan-induced diabetic rats subjected to resistance exercise training program. Appl Physiol Nutr Metab 2019;45(4):401-10. https://doi.org/10.1139/apnm-2019-0331

Baldissera G, Sperotto NDM, Rosa HT, Henn JG, Peres VF, Moura DJ et al. Effects of crude hydroalcoholic extract of Syzygium cumini (L.) Skeels leaves and continuous aerobic training in rats with diabetes induced by a high-fat diet and low doses of streptozotocin. J Ethnopharmacol 2016;194:1012-21. https://doi.org/10.1016/j.jep.2016.10.056

Costa RA, Souza LMV, Santos JL, Santos SB, Teixeira KCS, Araújo SS, Estevam CS. Extrato hidroetanólico da entrecasca da S. Cumini (L.) skeels reduz o estresse oxidativo de ratos wistar submetidos ao treinamento intervalado de alta intensidade. Revista Brasileira De Nutrição Esportiva 2019;13(79):406-20.

Araújo SS, Aidar FJ, Matos DG, Santos JLD, Souza LMV, Silva AND et al. does croton argyrophyllus extract has an effect on muscle damage and lipid peroxidation in rats submitted to high intensity strength exercise? Int J Environ Res Public Health 2019;31;16(21):4237. https://doi.org/10.3390/ijerph16214237

Santos JL, Dantas REA, Lima CL, Araújo SS; Almeida ECV, Marçal AC, Estevam CS. Protective effect of a hydroethanolic extract from Bowdichia virgilioides on muscular damage and oxidative stress caused by strenuous resistance training in rats. J Int Soc Sports Nutr 2014;11:1-10. https://doi.org/10.1186/s12970-014-0058-3

Pereira Panza VS, Diefenthaeler F, Silva EL. Benefits of dietary phytochemical supplementation on eccentric exercise-induced muscle damage: Is including antioxidants enough? Nutrition 2015;31(9):1072-82. https://doi.org/10.1016/j.nut.2015.02.014

Panza VS, Wazlawik E, Ricardo Schütz G, Comin L, Hecht KC, da Silva EL. Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition 2008;24(5):433-42. https://doi.org/10.1016/j.nut.2008.01.009

Powers SK, Nelson WB, Hudson MB. Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med 2011;51(5):942-50. https://doi.org/10.1016/j.freeradbiomed.2010.12.009




DOI: http://dx.doi.org/10.33233/rbfex.v19i4.4013

Apontamentos

  • Não há apontamentos.


Direitos autorais 2020 Revista Brasileira de Fisiologia do Exercício

Licença Creative Commons
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional.