The effects of immersion cryotherapy on levels of muscle strength and power

Andre Luiz Lopes, Júlia da Silveira Gross, Renata Kruger Lopes, Gustavo dos Santos Ribeiro, Régis Radaelli, Randhall Bruce Kreismann Carteri, Bruno Costa Teixeira, Álvaro Reischak-Oliveira

Resumo


Aims: To verify the influence of immersion cryotherapy on isometric strength and lower limb power of athletes. Methods: Using a cross-sectional crossover design, 14 rugby athletes underwent three laboratory visits. The first visit was composed of anthropometric (mass, height, and body composition), aerobic capacity (cardiopulmonary exercise test), and dietary assessments. On the second and third visits, vertical jump and isometric peak torque of the knee extensors were assessed in three moments: 1) at baseline; 2) after fatigue protocol; and 3) after recovery protocol: active rest or immersion cryotherapy. Fatigue protocol was composed by running at a speed corresponding to 120% of VO2MAX until voluntary fatigue. To immersion cryotherapy, all subjects had their lower limbs immersed in a tank with ice and water (10 ± 1°C), remaining in the standing position for 10 minutes. For active recovery, subjects were standing in an empty tank. Data were analyzed on GraphPAD Prism (p<0.05). Results: Fourteen rugby athletes (age 22 ± 2 years; fat mass 27.8 ± 4.4%; VO2MAX 44.1 ± 6.7 ml.kg-1.min-1) were evaluated. There was no difference in caloric intake among the evaluation days (2,893 ± 802 versus 2,915 ± 746 kcal; p=0.949). Jump height reduced 18% after fatigue and immersion cryotherapy protocols (33.0 ± 2.8 versus 27.0 ± 2.8 cm; p<0.05) and a 7.1% increase after fatigue and active rest (32.5 ± 6.4 versus 34.8 ± 2.1 cm; p<0.05). Regarding the isometric peak torque, it was reduced by 3.7% after immersion cryotherapy (295 ± 71 versus 285 ± 68 Nm; p<0.05) and 9.6% after active rest (297 ± 73 versus 268 ± 72 Nm; p<0.05). Conclusion: Immersion cryotherapy seems to affect lower limb power albeit could assist in the recovery of isometric strength compared to passive recovery. This information is important to compose recovery protocols for specific tasks.

Keywords: physical therapy specialty, cryotherapy, recovery of function, regeneration, muscle strength, athletic performance, exercise.


Texto completo:

HTML PDF ENGLISH PDF PORTUGUÊS

Referências


Freire B, Geremia J, Baroni B, Vaz M. Effects of cryotherapy methods on circulatory, metabolic, inflammatory and neural properties: a systematic review. Fisioter Mov 2016;29(2):389-98. https://doi.org/10.1590/0103-5150.029.002.AO18

Bleakley C, McDonough S, Gardner E, Baxter G, Hopkins J, Davison G. Cold-water immersion (cryotherapy) for preventing and treating muscle soreness after exercise. Cochrane Database Syst Rev 2012;15(2):CD008262. https://doi.org/10.1136/bjsports-2013-092433

Baroni B, Leal Junior E, Generosi R, Grosselli D, Censi S, Bertolla F. Efeito da crioterapia de imersão sobre a remoção do lactato sanguíneo após exercício. Rev Bras Cineantropom Desempenho Hum 2010;12(3):179-185. https://doi.org/10.5007/1980-0037.2010v12n3p179

Gregson W, Black M, Jones H, Milson J, Morton J, Dawson B, Atkinson G, Green D. Influence of cold water immersion on limb and cutaneous blood flow at rest. Am J Sports Med 2011; 39(6):1316-23. https://doi.org/10.1177/0363546510395497

Herrera E, Sandoval M, Camargo D, Salvini T. Motor and sensory nerve conduction are affected differently by ice pack, ice massage, and cold water immersion. Phys Ther 2010;90(4):581-91.

Pritchard KA, Saliba SA. Should athletes return to activity after cryotherapy? J Athl Train 2014;49(1):95-6.

Douris P, Mckenna R, Madigan K, Cesarski B, Costiera R, Lu M. Recovery of maximal isometric grip strength following cold immersion. J Strength Cond Res 2003;17(3):509-13. https://doi.org/10.1519/00124278-200308000-00014

Howatson G, Gaze D, Van Someren K. The efficacy of ice massage in the treatment of exercise-induced muscle damage. Scand J Med Sci Sports 2005;15(6):416-42. https://doi.org/ 10.1111/j.1600-0838.2005.00437.x

Sellwood KL, Brukner P, Williams D, Nicol A, Hinman R. Ice water immersion and delayed-onset muscle soreness: a randomised controlled trial. Br J Sports Med 2007;41(6):392-7. https://doi.org/10.1136/bjsm.2006.033985

Rowsell G, Coutts A, Reaburn P, Hill-Haas S. Effects of cold-water immersion on physical performance between successive matches in high-performance junior male soccer players. J Sports Sci 2009;27(6):565-73. https://doi.org/10.1080/02640410802603855

Stewart A, Marfell-Jones M, Olds T, De Ridder H. International Standards for Anthropometric Assessment. A manual for teaching materials for accreditation. 3nd South Africa: ISAK; 2011.

Ross W, Kerr D. Fraccionamiento de la masa corporal: nuevo método para utilizar en nutrición clínica y medicina deportiva. Apunts 1991;28(109):175-88.

Ribeiro G, Lopes A. Análise da composição corporal: evolução histórica do modelo anatômico de análise tecidual. Revista Brasileira de Prescrição e Fisiologia do Exercício 2017;11(68):620-5.

Pereira U, Ribeiro G, Lopes A. Can heart rate variability predict the second metabolic threshold in young soccer players? Int J Exerc Sci 2018;11(2):1105-11.

Zabotto C. Registros fotográficos para inquéritos dietéticos: utensílios e porções. Unicamp: São Paulo; 1996.

Batista P, Dias M, Dalamaria T, Ramalho A. Álbum fotográfico de porções alimentares: aspectos metodológicos. DêCiência em Foco 2018; 2(2):141-9.

Bosco C, Luhtanen P, Komi P. A simple method for measurement of mechanical power in jumping. Eur J Appl Physiol 1983;50(2):273-82.

Vitória M, Lopes A, Garlipp D, Ribeiro G. Área muscular da coxa não prediz altura do salto vertical em atletas de futebol profissional. Revista Brasileira de Futsal e Futebol 2018;10(40):577-82.

Cunha G, Vaz MA, Herzog W, Geremia, JM, Leites G, Reischak A. Maturity status effects on torque and muscle architecture of young soccer players. J Sports Sci 2019:1-10. https://doi.org/10.1080/02640414.2019.1589908

Bailey D, Erith S, Griffin PJ, Dowson A, Brewer D, Gant N, Williams C. Influence of cold water immersion on indices of muscle damage following prolonged intermittent shuttle running. J Sports Sci 2007;25(11):1163-70. https://doi.org/10.1080/02640410600982659

Kinzey S, Cordova L, Gallen K, Smith J, Moore J. The effects of cryotherapy on ground-reaction forces produced during a functional task. J Sport Rehab 2000;9(1):3-14. https://doi.org/10.1123/jsr.9.1.3

Rhodes D, Alexander J. The effect of knee joint cooling on isokinetic torque production of the knee extensors: considerations for application. Int J Sports Phys Ther 2018;13(6):985-92.

Tassignon B, Serrien B, De Pauw K, Baeyens J, Meeusen R. Continuous knee cooling affects functional hop performance - a randomized controlled trial. J Sports Sci Med 2018;17(2):322-9.

Haupenthal D, Noronha M, Haupenthal A, Ruschel C, Nunes G. Skin cooling and force replication at the ankle in healthy individuals: a crossover randomized controlled trial. J Athl Train 2015;50(6):621-8.

Fuchs CJ, Kouw IWK, Churchward‐Venne TA, Smeets JSJ, Senden JM, Wouter D. Lichtenbelt WDVM, et al. Postexercise cooling impairs muscle protein synthesis rates in recreational athletes. J Physiol 2019;598(4):755-772. https://doi.org/10.1113/JP278996




DOI: http://dx.doi.org/10.33233/rbfex.v19i4.3925

Apontamentos

  • Não há apontamentos.


Direitos autorais 2020 Revista Brasileira de Fisiologia do Exercício

Licença Creative Commons
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional.